Acids and Bases

What is an acid?

Brønsted/Lowry acid: a proton donor proton donor?...

a proton is also an H⁺ ion

in water, H_2O + donated $H^+ \rightarrow H_3O^+$ • H_3O^+ = "hydronium ion"

What is a base?

Brønsted/Lowry base: a proton acceptor proton acceptor?...

any substance that will take an H⁺ ion

in water, $H_2O + base \rightarrow OH^- + Hbase$

Brønsted /Lowry "neutralization"

For weak acids and weak bases

$Acid_1 + Base_1 \rightleftharpoons Acid_2 + Base_2$

what's actually happening?

Note the "double arrow"

$Acid_1 + Base_1 \rightleftharpoons Acid_2 + Base_2$

- Acid₁ → H⁺ + Base₂
 Acid₁ donates H⁺ and becomes Base₂, its "conjugate base"
- H⁺ + Base₁ \rightarrow Acid₂
 - Base₁ accepts the H+ from Acid₁ and becomes Acid₂, its "conjugate acid"

Brønsted /Lowry "neutralization"

Examples...

$HF + H_2 O \rightleftharpoons F^- + H_3 O^+$

HF donates an $H^+ \Rightarrow$ is an "acid"

H_2O takes the H⁺ from the HF \Rightarrow it is the "base"

Brønsted /Lowry "neutralization" $HF + H_2O \rightleftharpoons F^2 + H_3O^2$ Look at the "<u>reverse</u>" reaction which donates an H+ ? \Rightarrow it is an "acid" H_3O^2

which takes the H+ from the $H_3O^+ ? \Rightarrow$ it is the "base"

Brønsted /Lowry "neutralization"

$HF + H_2O \rightleftharpoons F^- + H_3O^+$

- HF a weak acid becomes F⁻, a base
- H₂O, acting as a base, becomes H₃O⁺, an "acid"

The acid becomes its "conjugate base"

The base becomes its "conjugate acid"

Brønsted /Lowry "neutralization"

Examples...

$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

H_2O donates an $H+ \Rightarrow$ is an "acid"

NH₃ takes the H+ from the H₂O \Rightarrow it is the "base"

Brönsted /Lowry "neutralization" $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ Look at the "<u>reverse</u>" reaction which donates an H+ ? \Rightarrow it is an "acid" NH_4^+

which takes the H+ from the $NH_4^+ ? \Rightarrow$ it is the "base"

OH-

Brönsted /Lowry "neutralization" NH₃ + H₂O \rightleftharpoons NH₄⁺ + OH⁻

- H₂O a weak acid becomes OH⁻, a base
- NH₃, acting as a base, becomes NH₄+, an "acid"

The acid becomes its "conjugate base" The base becomes its "conjugate acid"

Brønsted /Lowry "neutralization"

a weak acid \rightleftharpoons their conjugate+ a weak baseacid and base

Weak acids lose an H⁺ and become their conjugate bases

Weak bases gain an H⁺ and become their conjugate acids

 In Brønsted/Lowry Theory, "neutralization" only means an acid and a base react together
 It says <u>NOTHING</u> about the pH after they react!!

B/L Neutralization \Longrightarrow pH \neq 7

What is the conjugate base of... CH₃COOH? HCI? CH₃COO⁻ CI- $H_2CO_3?$ $HNO_3?$ HCO₃- $NO_3^ HCO_3^-?$ $HNO_2?$ CO32- $NO_2^ H_{3}O^{+}?$ NH₄+? H_2O NH_3

What is the conjugate acid of... $NH_3?$ PO_{4}^{3} ? NH_4^+ HPO₄²⁻ $CH_3COO^-?$ HPO₄²⁻? CH₃COOH $H_2PO_4^-$ HCO₃? $H_{2}PO_{4}^{-?}$ H_2CO_3 H_3PO_4 $H_{2}O?$ $NH_{2}^{-?}$ H_3O^+ NH_3

Did you notice...

...that H₂O was listed as an *acid*, <u>and</u> as a base \Rightarrow but a pure H₂O solution has pH = 7?

H₂O can act as an acid (lose an H⁺) or a base (accept an H⁺) depending on what it is combined with

AMPHOTERIC: act as an acid when with a base; act as a base when with an acid

Acids and Bases

Acids and Bases